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Existence and uniqueness of canonical points for best LI-approximation from an
Extended TchebychefT (ET) system, by Hermite interpolating "polynomials" with
free nodes of preassigned multiplicities, are proved. The canonical points are shown
to coincide with the nodes of a "generalized Gaussian quadrature formula" of the
form ru(t) aCt) sign n(t - X,)'i dt'" I 'i2

a,/ulJ)(x,j
a i=l i=lj=O

vO-1

+ L aoJuU1(a) + L an + IJuU1(b),
/=0 i=O

which is exact for the ET-system. In (*), L;i~-o2. == 0 if Vi = I, the Vi (> 0). i = I, ..., n.
are the multiplicities of the free nodes and Vo ;;, 0, Vn + I ;;, 0 of the boundary points in
the L I-approximation problem, L7:dvi is the dimension of the ET-system, and (J is
the weight in the Lt-norm.

The results generalize results on multiple node Gaussian quadrature formulas
(v 1, ..., Vn all even in (*)) and their relation to best one-sided L I-approximation.
They also generalize results on the orthogonal signature of a TchebyehefT system
(vO=vn+I=O, vj=l, i=I,...,n, in (*)), and its role in best LI-approximation.
Recent works of the authors were the first to treat Gaussian quadrature formulas
and orthogonal signatures in a unified way. © 1986 Academic Press. Inc.
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1. INTRODUCTION

In this paper we study the existence and uniqueness of canonical points
for best Lcapproximation by "polynomials" from an extended Tchebycheff
(ET) system, which interpolate the approximated function at free nodes
with preassigned multiplicities.

For arbitrary preassigned multiplicites v=(vo, ..., vn+d with vi>O,
i= 1,..., n, Vi~O, i=O, n+ 1, the canonical points a=x6 <xt < ... <x: <
x:+1= b determine a "generalize Gaussian quadrature formula" (GGQF) of
the form

ru(t) u(x*, v; t) dt
a .

n Vj-2 Vj-l

~ L L aiju(J)(x;*) + L L aiju(J)(x;*), (1.1)
i = 1 j = 0 i ~ O.n + I j ~ 0

which is exact for all functions in the ET-system U = span {Uo,"" UN} of
order N + 1= 'Lj,;t0

1
Vi' In (1.1) we use the convention 'L}= 0 ==°if s < 0, and

n

u(x, v; t) = u(t) sign n (t - x;)\
i= 1

(1.2 )

where u(t) E C[a, b] is the positive weight function in the LI-norm.
The GGQF (1.1) is a generalization, on the one hand, of the multiple

node Gaussian quadrature formulas ((1.1) with VI' ..., Vn all even), which
determine the canonical points for one-sided LI-approximation, while on
the other hand it generalizes the notion of the orthogonal signature
(v l = .,. =vn =l, vo=vn+I=O, in (1.1)), which defines the canonical
points for best LI-approximation from U.

The famous quadrature formulas of Gauss have been an attractive sub
ject of investigation. The classical result of Gauss guarantees the existence
of a unique set of n points in the interval of integration such that the
corresponding interpolatory quadrature formula is exact for all algebraic
polynomials of degree ~2n -1. This result was extended during 1950-1955
to arbitrary Tchebycheff systems by Krein [14], and to quadrature for
mulas with nodes of odd multiplicities in the algebraic case, by Turan [18],
Tschakaloff [17], and Popoviciu [16]. The uniqueness of the multiple
node formulas in the algebraic case was proved much later by Ghizzeti and
Ossicini [8]. The existence, uniqueness, and relation to best L 1

approximation of the multiple node Gaussian quadrature formula in the
case of complete ET-systems were proved by Karlin and Pinkus [12, 13].
Later Barrow [2] proposed a simpler ingenious proof of the existence and
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uniqueness based on topological degree, which obviates the requirement of
the completeness of the ET-system.

Parallel to this line of investigation the existence of canonical points for
best L1-approximation, which goes back to Markov, was proved by Hobby
and Rice [7]. A simpler proof was given by Pinkus [15], based on the
Borsuk Antipodality Theorem.

The unified approach to these two lines of investigation, leading to the
notion of GGQF and canonical points for best L[-approximation for
arbitrary preassigned multiplicities of the nodes of interpolation, was
originated by the first author of this paper in [3, 4] and independently by
the last two authors in [5]. In the papers [3,4], the existence, uniqueness,
and relation to best L1-approximation of the GGQF is proved for the
algebraic case, while in [5] these results are conjectured for ET-systems
and then used in the proof of the uniqueness of monosplines and perfect
splines of least LI-norm in a unified framework, via the notion of
"generalized monosplines" (see also [6]).

In Section 2 we establish our first main result:

EXISTENCE AND UNIQUENESS THEOREM. Let U = span {uo,..., UN} C

CN[a, b] be an ET-system and (J E C[a, b] a positive weight function. Then
for vo? 0, Vn + I? 0, Vi> 0, i = 1,... , n, such that N + I =L:7:d Vi' there exists
a unique set of nodes x* in

for which the generalized quadrature formula (GQF)

ru(t) (J(x*, v; t) dt = nf vI I aiju(j)(x;*),
a i=O j~O

has the property

UE U, (1.4 )

ai.v,-l = 0, i= 1,..., n. (1.5 )

The proof of this result can be based on arguments from topological
degree theory, as a direct extension of the method of Barrow [2]. Here we
choose to prove the existence by using the Borsuk Antipodal Theorem as
in Pinkus' proof of the Hobby-Rice theorem [15]. The uniqueness is
proved by a new inductive argument. In order to use induction, we prove
the existence of GQFs with two types of nodes: fixed nodes and Gaussian
nodes (see also [9]).

The existence of canonical points for best L1-approximation by inter
polating "polynomials" with preassigned multiplicities of nodes v, is proved
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in Section 3. More precisely it is shown that for any UN + 1 such that
{Uo, ..., UN+d is an ET-system of order N + 2, the extremal problem

i=O,...,Vi -l;i=o,... ,n+l} (1.6)

has a unique solution in Qn, independent of U N +[. This solution x*eQn
coincides with the set of nodes of the GGQF (1.1), and the Lagrangian
multipliers for the restricted optimization problem (1.6), constitute the
coefficients {a ij} in (1.1).

Before concluding the Introduction we define, for the sake of com
pleteness, the notion of an ET-system, which is central to this work.

DEFINITION 1. {uo,..., UN} c eN[a, b] is an ET-system on [a, b], if for
any a~to~'" ~tN~b,

(1.7)

where li= max{m: ti - m = ti , m ~i},i= 0,... , N.

It follows directly from Definition 1 that any Ue span {uo, ..., UN} \ {O} has
at most N zeros, counting multiplicities, in [a, b], up to order N.

2. EXISTENCE AND UNIQUENESS

The existence of generalized Gaussian quadrature formulas can be easily
shown via the Borsuk Antipodal Theorem. Since the latter is usually shown
by induction [1], it is probably more than a coincidence that we establish
uniqueness by an inductive argument. For this purpose we consider
generalized quadrature formulas (GQFs) with two types of nodes: free
nodes and fixed (or prescribed) nodes (see also [9]).

THEOREM 1. Let the conditions of the existence and uniqueness theorem
prevail, and let °~ k ~ n. Given n - k distinct nodes tk+ I' tk+ 2, ... , tne (a, b),
there is a set ofk nodes a=/O <tl <t2 < ... <tk<tn+l=b such that for

t=(to,···, tk, tk+ I , .. ·, tn+l )

b n + 1 v;-lf U(t)(J(t,v;t)dt- L L aiju(J)(t;) =0,
a i~O i~O

UE U, (2.1 )
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i = 1,2,..., k. (2.2)

Remark 1. The nodes t I' t2,'''' tk are called the Gaussian nodes of the
GQF. Some of them may coincide with some of the prescribed nodes
(cr. [9]). In such cases (2.1) must be adjusted as follows: if tj=tl,j~k<l,
then t1 has to be removed from the list of fixed nodes and the multiplicity vj

is to be replaced by vj + VI' Note that such merging of nodes changes
neither N nor the sign of O'(t, v; t).

Our first aim is to understand the fact that the sign changes of
±O'(t, v; t) at the Gaussian nodes provide the only sign pattern which is
consistent with (2.2) for the multiplicities Vj, ... , Vk .

LEMMA 1. Let 1~k~n and ta<t j < ... <tk<tn+l . Assume that
Is(t)1 == 1 and that s is constant in the subintervals (ta, td, (tl, t2 ), ... ,

(tk> tn+d· Moreover let s(t)= +1, tE [ta, t j ] andt be as in Theorem 1. If in
a formula of the form

b 11+ 1 vi-tf u(t)O'(t,v;t)s(t)dt= L L aijuU)(t,),
a ,~a j=a

(2.2) holds, then s(t)= +1 in (a, b)- {t l , ... , td.

Proof Define an auxiliary multiplicity vector 00 by

UE U, (2.3 )

=V,

if s changes its sign at t i, 1~ i ~ k,

otherwise.

Moreover choose W n + I such that L7,;;d (w, - v,) = 0. Obviously O'(t, 00; t) =
s( t) 0'( t, v; t) almost everywhere. Consider the function u E U which solves
the interpolation problem

j=o, 1, ...,w,-I,i=O, 1, ...,n+1. (2.4)

From (2.4) it follows that u has N zeros counting multiplicities. Since {ua,
u1, ... , UN} is an ET-system, u has no more zeros than specified. Hence
u(t) O'(t, 00; t) is of constant sign in [a, b] and J~ u· O'(t, 00; . ) -=1= 0. On the
other hand 00 -=1= v implies W n + I > Vn + I' and by (2.4) the right-hand side of
(2.3) equals zero. This contradiction leads to the conclusion that s(t) has
the same sign in (a, b) - {t j,... , t k }. I

The next step towards the proof of Theorem 1 deals with the sign pattern
of the leading coefficients in (2.1), corresponding to the Gaussian and the
boundary nodes.



340 BOJANOV, BRAESS, AND DYN

LEMMA 2. If al. v/_ 1 =°holds for some IE {1 ,..., n} in a GQF of the type
(2.1), and if vI ?3 2, then

Moreover if Vo > °in (2.1) then

(2.5)

sign aOJ = sign a(t, v; a + 0),

while if vn + 1 >°
sign an + IJ =(-1)J a(t, v; b - 0),

j=0, ...,vo-1,

j = 0,..., Vn + 1 - 1.

(2.6)

(2.7)

Proof Choose u E V according to the N interpolation conditions

U(J)(tI) = (jJ,v/-2,

u(J)(t;) = 0,

j=o, , vl-2, u(Vn+ Jl(t n + 1 )=0,

j = 0, , Vi - 1, i = 0,..., n + 1, i =1-1.
(2.8)

As in Lemma 1, UE V has no more zeros than the N specified by (2.8) and
u· a( t, v; . ) is of constant sign in [a, b]. Since sign u(t1+ 0) > 0,

sign[u(t) a(t, v; t)] = sign a(t, v; tl+ 0),

and therefore

signru(t) a(t, v; t) dt = ai'
a

while by (2.1) with al,v/- 1 = 0 and by (2.8)

at•v/-2 =ru(t) a(t, v; t) dt.
a

This proves (2.5). The sign patterns (2.6) and (2.7) are obtained
similarly. I

The main tool in the proof of Theorem 1 is a topological argument (see,
e.g., [1]).

BORSUK ANTIPODALITY THEOREM. Let Q be a bounded, open symmetric
neighborhood of ° in R m + 1 and let TE C(aQ, R m

) be odd on aQ, i.e.,
T( - x) = - T(x). Then there exists an x E aQ for which T(x) = O.

Proof of Theorem 1. Let Sk c R k + 1 be defined by
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Given y E Sk we associate with y the vector t = t(y) specified by to = a,
t i = t i _ 1 + I Yi-II, i = 1, 2, ..., k and t i , i = k + 1,..., n + 1.

Since by this construction the nodes t i(Y)' 1~ i ~ k, are not necessarily
distinct, divided differences are used to extend the definition of the GQF
(2.1) continuously to all possible t(y). Thus we define {io , i I, ..., iN} to
contain v1 times the node t i for i = 0,..., n + 1, and enumerate the i/s such
that

i= 1,2,..., k. (2.9)

For U c CN[a, b], the divided differences u[io, i I, ... , ij ], u E U, are con
tinuous functions of the j arguments, in [a, b] j, for °~j ~ N [10, p. 252].

We consider the linear functionals ly defined by

k f1i+ LVii
ly(U) = L (sign yJ u(t) O"(t, v; t) dt

i=O I,

N

- L bju[io, ii, ..., i j ].

j~°
Here t=t(y) and bj=bj(y),j=O, 1,... , N, are to be chosen so that

(2.10)

i = 0, 1,..., N. (2.11 )

Conditions (2.11) provide a linear system of equations for the N + 1 coef
ficients bo, b l , ..., bN • The matrix is nonsingular, being the adjoint of the
matrix for the Hermite interpolation problem at t, by functions from U.
Since the matrix and the right-hand side of the equations are continuous
functions of y, the mapping T: Sk ~ Rk,

is continuous and odd. By the Borsuk Antipodal Theorem we have Ty* =
T( -y*) = °for a y* E Sk. Formula (2.10), in view of (2.11) and the choice
of y*, becomes

k f1i(y,) + IY~IL signY7. u(t)O"(t*(y),v:t)dt
i~° I,(y')

N-k

= L b/y*) u[it(y*),oo., ij(y*)],
j~O

UE U. (2.12 )

Let a < 't < ... < r, < b, s ~ k, be the distinct nodes among
tl(y*),· .., tk(y*), contained in (a, b), and denote by O='O<'s+1 < ... <
'm < 'm +1= b those nodes among to, tk+1,..., tn' tn+1which do not coincide
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with one of the nodes 'I,..., os' Then (2.12) can be written in the form (2.3)
with the nodes t, the multiplicities

wi = I Vj ,

j E I(i)

i=O, ..., m + 1,

and, in view of the ordering (2.9), with

j= 1,..., s.

Hence by Lemma 1 all the non-zero components of y* are of the same sign,
and (2.12) is equivalent to a GQF of the form (2.1) satisfying (2.2) with
nodes t and multiplicities w.

To conclude the proof of the theorem it remains to verify that Yi* =F 0,
i =0,... , k. Suppose to the contrary that Y i =°for at least one i, °~ i ~ k.
Then either there exists I, 1~ I ~ s, such that

or ycf yt =° and therefore at least one of the coefficients aO,wo-l,

am + I,wm + I _ I vanishes. In all three cases we obtain a contradiction to
Lemma 2. Therefore eYi* > 0, i = 0,..., k with e = +1 or -1, and the formula
(2.12) is of the desired form. I

As is obvious from the proof of Theorem 1, explicit relations between
formula (2.1) and its equivalent formula in terms of divided differences are
important in the study of GQFs with Gaussian nodes.

LEMMA 3. Given a = to < < tn + 1 = b, let {io, ..·, iN} consit of each ti

repeated Vi times, i = 0, , n + 1. Then for U E C1vl - I [a, b] with

IvI= max {vi I°~ i ~ n + 1},
n+ 1 \/;-1

[ , "] - '\' '\' (j)
U to,'''' tN - 1... 1... CijU (tJ

i~O j~O

with
1 n+1

C - TI (t-t)-v)
i,Vi- 1 - ( . _ 1)' '.1'

V, • j~O
j~i

Proof The lemma is a direct consequence of the following formulas for
divided differences [10, p. 252]:

n+l n+l

f[t o,tj,...,tn + 1]= If(tJ TI (t;-tj)-I,
i=O j~O

j~i

(

n+1 1 a~-I)

u~ ...,~] = n (v-I)! at Vi - 1 u[to, t1>'''' tn + l ]. I
\/0 Vn+1 1=0 J I

Now we are in the position to prove a uniqueness result.
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THEOREM 2. Let the conditions of the existence and uniqueness theorem
prevail and let O~k~n. Given n-k nodes a<tk+I <tk+2 < ... <tn<b
there is at most one set of k nodes in (a, tk + d,

(2.13 )

for which the GQF (2.1) with the nodes to, t ]>... , tn+ I satisfies (2.2)

Proof There is nothing to prove for k = 0. Let k >°and assume that
the theorem is true for k - 1.

Given tk + 1 , ... , t n suppose that there are two sets of k Gaussian nodes in
( ) { * * *} d {** ** **} I . f h . d .a, tk+I : t I , t 2 , ... , tk an t l , t 2 , ... , tk . n VIew 0 t e III uctlOn
hypothesis tt #- tt*, and we may restrict ourselves to the case tt < tt*.
Define a subset Yof [tt, t't*J as follows: If tkE Y then there are k-l
nodes t 1 < ... < tk_ 1 in the interval (a, tk) such that

a i•Vi - I = 0, i= 1, 2, ..., k-l, (2.14)

in (2.1) with the nodes to, t l , ... , tn+ l • Obviously tt, tt*E Y.
First we verify that Y is open in [tt, t't*J, and then show that Y = [tt,

t't*]. To do so, we regard the N - k + 2 weights a = {aij} in (2.1), not
prescribed by (2.14), and the k-l Gaussian nodes, t I , ... , tk - I , as functions
of tk , to be determined implicitly by the system of equations

j=o, 1,... , N, (2.15 )

which is obtained by applying (2.1) with (2.14), a(tk), and the nodes

to uj ' j = 0,..., N.
Differentiation of (2.15) with respect to t b yields.

k dt.
j~l (O"j_1 - 0";) u(t j ) O"(t;) dt~

n+ 1 Vi - 1 [ dt da J- L L ai/u(l+I)(ti)_i+---.!!.u(l)(tJ =0,
i~O 1~0 dtk dtk

u=uj,j=O,..., N, (2.16)

with

=vi,i=O,

l~i~k-l,

k~i~n+l,
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i = 0, k + 1 ~ i ~ n + 1. (2.17)

The Jacobian of F = {Fj }t~ 0 is the determinant of the linear system (2.16)
for the N + 1 derivatives

1~i~k-1,

j = 0,..., \\ - 1, i = 0,..., n + 1.

(2.18 )

(2.19 )

Thus the Jacobian of F is non-singular if the derivatives (2.18) and (2.19)
are uniquely determined by (2.16). Indeed for VijE U satisfying the N inter
polation conditions:

J1 = 0'00" V,- 1, 1= 0"00' n + 1,

we obtain from (2.16) and (2.17) the simplified system of equations.

j = 0'00" V i - 2, i = 1'00" k -1, (2.20)

i=l,oo.,k-l, (2.21)

j= 0, ..., Vi-I, i= 0, i= k,.oo, n + I, (2.22)

with the convention

ai,-l :=(U,-U'_l)U(t i ), i= 1'00" k-1. (2.23 )

Equations (2.21) determine the derivatives (2.18), since a'.v,-2 ;60,
i=l,oo.,k-I, by Lemma2 for vi~2 and by (2.23) for vi=l. The
derivatives (2.19) are then determined explicitly by (2.20) and (2.22).

In particular

(2.24)

and for t k = t't

(2.25 )
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Invoking the Implicit Function Theorem we conclude that a(td,
t 1(t k),···, tk_ 1(tk), determined implicitly by (2.15) are differentiable
functions of tb and hence there is E > 0 such that

[tt, tt+E)C Y, (tr - E, tr] C y.

By the continuity of t 1(t k) < ... < tk_ 1(td, and in view of Theorem 1,
Y = [tt, tr] if there is no lk E (tt, tr) such that

lim tk_ 1( tk) = Ik.
lk - tk

(2.26 )

Suppose to the contrary that (2.26) holds, and that IkE [t*, t**] is the
smallest with this property, namely that [tt, ld C Y. Now by the proof of
Theorem 1, for each tk E [tt, tr], the GQF with the Gaussian nodes
t1(tk),'''' tk_ 1(tk) and the prescribed nodes to, tb tk+1 , ... , tn +1 can be writ
ten in the form

b N-k+ 1f u(t) O'(t(td, v; t) dt = L b)tk) u[io, .. ·, ij ], (2.27)
a j-O

where t(t k ) = {io,"" iN - k + d consists of each Gaussian node repeated one
time less than its multiplicity, while each prescribed node is repeated
according to its multiplicity. Also by the proof of Theorem 1, the coef
ficients {bj } in (2.27) are continuous functions of tk . Let iN _ k + 1 = tk ; then
for all tkE(tt, lk) we obtain by Lemma 3

b N- k+1(t k)(t )_VO
kn-1

( ())-v+l nn+1
( )-V

ak.Vk - 1 = (v
k
-1)! k-tO j~l tk-tjtk J j~k+l tk-tj J.

(2.28)

On the other hand, for tk=lk, tk- 1(lk)=lk is a Gaussian node of mul
tiplicity v:= Vk- 1 + Vb and the coefficient of u(v- 2)(lk) in the GQF is given
by

k-2 n+ 1
X n (lk- tPk))-Vj+l n (lk-tj)-v1, (2.29)
j~1 j-k+l

Now for 1] > 0 small enough, it follows from (2.25), Lemma 2, and (2.23)
that signak,vk_l(tk)= -O'k for tkE(tt, tt+1]), and hence by (2.28)
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If bN- k+ l(ik) = 0 for tk < lb we take rr = tb and conclude that Y = [tt,
tt*]. Otherwise we can assume that bN - k+1(tk)#0 for tkE(tt, lk]. That
bN - k+ l(tk) #0 follows from (2.29) and Lemma 2. Hence bN - k+l(td has a
constant sign in (tt, lk]. But (2.29) and Lemma 2 yield

(2.31 )

in contradiction to (2.30). Thus (2.26) cannot hold for lk E (tt, tt*), and
Y= [tt, tt*J. By choosing tt* as the first zero of ak.Vk- 1(tk) in (tt, tt*J,
we guarantee that for each tkE(tt, tt*) there is a GQF (2.1) with nodes
to<t1(td<'" <tk_ 1(t k)<tk<· .. <tn+! and coefficients satisfying
(2.14), such that ak,Vk-l(td#O. Hence ak.Vk - 1(td has a constant sign in
(tt, tt*), which is determined by (2.25), Lemma 2, and (2.23) to be

On the other hand, (2.24) evaluated at tt*, together with Lemma 2 and
(2.23), determines the sign of ak, Vk _ 1(t k) to be + 0'k in (tt, tt*). This
provides the desired contradiction, and the uniqueness is proved. I

The existence and uniqueness theorem of Section 1 is an immediate con
sequence of Theorems 1 and 2.

Before concluding this section we conjecture that the uniqueness result of
Theorem 2 is valid without the restriction (2.13); namely, there is a uni
queness result for the GQFs which are known to exist by Theorem 1.

3. EXTREMAL PROPERTIES OF
GENERALIZED GAUSSIAN QUADRATURE FORMULAS

In this section we study the extremal properties of the nodes of the
generalized Gaussian quadrature formula (GGQF),

b vo - 1 n Vk - 2f O'(X, v; t)f(t) dt~ I aoAf(}c)(a) + L L ak)J(A)(Xk)
a ),~O k~ 1 ;,~O

V n +l - 1

+ L an+UJ(A)(b),
;, ~O

(3.1 )

which is exact for an ET-system U = span {uo, ..., UN} of dimension N + 1 =
LZ~b Vk'

The sign pattern of the leading coefficients in (3.1) is obtained as a direct
consequence of Lemma 2:
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THEOREM 3. Let (3.1) be exact for all the functions in V. Then

sign a i.vi - 2 = sign a(x, v; Xi + 0),

sign ao.1' = sign a(x, v; a + 0),

sign an + 1.1' = sign a(x, v; b - 0)( -1 )1',

Given the vector of multiplicities v,

ifv;> 1, i= 1,00.,n,

ifvo>O, j.1=vo-l,

if vn + 1 > 0, J1 = vn + I - 1.

(3.2)

v;>o, i= 1'00" n, (3.3 )

we consider the minimization of the functional Iv(x),

Iv(x) :=rIP(x, v; t)1 a(t) dt,
a

xEQn:= {x:a=xo< ... <Xn+1 =b},

(3.4 )

P(A)(X, v; X;) = 0, ). = 0'00" v; - 1, i = 0'00" n + 1. (3.5)

Here uo,oo., UN' pu N +I is an ET-system of order N + 2, with p = + 1 or -1,
so that

sign P(x, v; t) = sign IT(x, v; t), (3.6 )

This problem is related to the generalized Gaussian quadrature formula
(3.1) by the following theorem:

THEOREM 4. If ~=(a=~o< ... <~n+l=b)EQn minImIzes Iv(x) of
(3.4) over Qn, then ~o,oo., ~n + 1 are the nodes of a quadrature formula of the
form (3.1) related to the multiplicities v, which is exact for
U = span {uo,·oo, UN}'

Proof The minimization of Iv(x), with P(x, v, t) constrained by (3.5), is
equivalent to the minimization of the functional.
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(3.7)

(3.8 )k= 1,..., n.

k=O,...,N,

with Aij, j = 0,..., Vi - 1, i = 0,..., n, the corresponding Lagrange multipliers.
Hence ~ and the optimal vector c* satisfy.

aIy

;;- (~, c*) = 0,
UCk

aIy ): *-;- (~, c ) = 0,
UXk

These equations are equivalent, in view of (3.6), to

f
b n+ I v,-I

udt) u(x, v; t) dt = L L Aijull)(xi ),

a i~a j=a

k=O,...,N, (3.9)

and
Vk- I

'\' AP(j+ I)(X v' x ) = °L. k; , ,k ,
j~a

k= 1,..., n. (3.10)

Now, since P(x, v; t) satisfies (3.5) and its number of zeros counting mul
tiplicities does not exceed N + 1,

p(Vk)(X, v; xd #- 0, k = 1,..., n,

while by (3.5) and (3.10) Ak.Vk_IP(Vk)(X,v;xd=O, k=l, ...,n. Hence
Ak •Vk _ I = 0, k = 1,..., n, and (3.9) is of the form (3.1) and is exact for U. I

Following the method of proof in [11], we obtain the existence of a
point ~ E Q n' minimizing I y(x), from the next two lemmas:

LEMMA 4. For given non-negative multiplicities v = (va,.··, Vn + I), with
va> 0, let P(x, v; t) be defined by (3.5) and (3.6). If ~ E Q n minimizes

Iy(x) =rIP(x, v; t)lu(t)dt, xEQn,
a

then for v= (Va, VI' VI"'" Vn +d with Va +VI = Va, Va ~ 0, VI> 0, there exists
e > °small enough, such that

rIP(~, v; t) Iu(t) dt>rIP(~, v; t)1 u(t) dt, (3.11)
a a

for all ~ = (a, a + '1, e1,.", en, b) E Q n+ I' with °< '1 < e.

Proof By the optimality of ~ and by Theorem 3, ~ satisfies (3.9) with
Ak,Vk-I=O, k=l, ...,n. Applying (3.9) to P(~,v;t}-P(~,V;t)EU, we
obtain.

b ~-If [P(~, v; t) - P(~, v; t)] u(~, v; t) dt = - L aajp(j)(~, v; a). (3.12)
a j= VQ
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Hence

f
b fb ~IP(~, v; t) Ia(t) dt - IP(~, v; t) Ia(t) dt

a a

~-l fa+~
=- I aOjp(j)(~,v;a)+ P(~,v;t)[a(~,v;t)-a(~,v;t)].

j~ vo a

(3.13 )

The proof of the lemma is completed by showing that for c > °small
enough the dominating term in the right-hand side of (3.13) is
aO.Vo_1P(vo-l)(~, v;a), and that this term is negative.

Since {uo ,..., UN} and {uo ,..., UN + dare ET-systems on [a, b]

lim p(j)(~, v; t) = p(j)(~, v; t),
~-o

uniformly in [a, b] for j = 0, 1,..., Vo' In particular for c > °small enough

p(VO)(~, v; t) = P(vo)(~, v; t) +0(1]) =I 0, a~t~a+l]~a+c, (3.14)

since p(vo)(~, v, a)=lO.
Now by Rolle's theorem, p(vo-j)(~, v; t) has exactly j simple zeros in

(a, a + 1]), j = 1,..., Vo - vo, and

! t > ! 2 > ... >! Vo - vo > a,

where!j is the smallest zero of P(vo-jl(~, v; t) in (a, a+1]).
It follows from (3.14) and (3.15) that

Ip(vo-l)(~, v; t)[ ~ IP(vo-t)(~, v; a)l,

sign p(vo-I)(~, v; t) = -sign p(vo)(~, v, a),

and since for j = 2,..., Vo - Vo

(3.15 )

(3.16 )

a<t<!j<Tt, (3.17)

where t < ilt) < Tj , we finally obtain that

IP(vo-j)(~, v; t)1 ~ IP(vo-t)(~, v;a)I(!t-a)j-t, a~t~Tj,j=1,..., vo-vo.

(3.18 )

The bounds in (3.18) guarantee that aO,VO_1P(Vo-t)(~,v;a)is indeed the
dominating term in the right-hand side of (3.13). That this term is negative
follows from (3.2), (3.16), and the observation that sign p(vo)(~, v; a) =
sign a(~, v; a + 0). I

640/48/4.2
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Remark 1. The same result as Lemma 4 holds for v=(vo,..., Vn, Vn,
vn+d, I; = (a, ~l"'" ~n, b-y/, b)EQn+I' with vn+ vn+1 = Vn+I and vn>0.

LEMMA 5. Let v be non-negative multiplicities with vi ~ 2 for some i,
1~i~n, and let P(x, v:t) be defined by (3.5) and (3.6). Ifl;EQn minimizes

Iv(x) =rIP(x, v; t)1 a(t) dt, x EQn,
a

then for V= (Vo, VI"'" Vi-I' Vi' Vi+!> Vi+!>· .. , vn+d with vi>O, Vi+ 1 >0
satisfying Vi + Vi + I = Vi' there exists E; > 0 small enough such that

,1 == rjP(I;, v; t)1 a(t)dt-rIP(~, v, t)la(t)dt>O (3.19)
a a

for all ~=(a'~I""'~i_I'~i-15, ~i+Y/' ~i+I'''''~n,b)EQn+I' with
15 = 15( Y/ ) > 0 and 0 < Y/ ~ e:

Proof As in the proof of the previous lemma, we use the generalized
quadrature formula (3.1) at the optimal nodes ~, guaranteed by Theorem 4,
to obtain

v;-2 ()£ f~i+~ ~ ~
,1=- L aijpj(I."V;U+ P(I;, v; t)[a(l;, v; t)-a(l;, v; t)] dt. (3.20)

j~O ~i-b

Since Vi ~ 2, the sum in (3.20) is not empty, and by Lemma 2

sign a i•Vi - 2 = sign P(I;, v; ~i +0) = sign a(l;, v; ~i +0). (3.21)

Moreover it can be shown, as in the proof of Lemma 4, that p(v,~j)(~, v; t)
has exactly j zeros, counting multiplicities, in [~i - 15, ~ i + Y/], 0 ~j ~ Vi' for
15 > 0, Y/ > 0 small enough, since

In particular p(Vi-2)(~,v;t) has two simple zeros in [~i-15'~i+Y/]' and
p(v;-I)(~,v,t) has a unique simple zero TIE(~i-15'~i+Y/)' with all the
Rolle zeros depending continuously on Y/, b. Since for Y/ = 0, r IE (¢i - 15, ~i)'

while for 15=0, TIE(~i' ~i+Y/)' for each O<y/<e with e>O small enough,
there exists 15( Y/ ) > 0 such that T I = ~ i' For this choice of 15(,,), the two sim
ple zeros of p(vo~2)(~, v; t) in [~i-15(,,), ~i+"]' denoted by r~<T~, are
separated by ~i' Therefore

sign p(v,- 2)(~, v; ~i) = -sign p(V;)(/;, v; U = - sign a(/;, v; ~i + 0), (3.23)

and

(3.24 )
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In case Vi = 2 it is obvious that aiOP(~' v;~;) is the dominating term in
the right-hand side of (3.20). The term ai,Vi- 2P(Vi- 2)(~, v; U is negative for
all vi~2, by (3.21) and (3.23), Thus to conclude the proof it is sufficient to
show that this term is dominating also in case Vi ~ 3.

Let ,}" < ~i < 11 be the smallest and largest zero of p(Vi-j)(~, v; t) in
[~i-<5(I]), ~i+I]],j=2,oo., Vi' and let J;:= [rj

L, rJ]. Then

max Ip(v,-j)(~, v; t)1 = max IP(Vi-j)(~, v; t) I, 3 ~j ~ Vi' (3.25)
(E.f., IEJj_t

Since each zero r
j
L_l' rJ-l is either a Rolle zero of p(Vi-j+ l)(~, v; t) or an

endpoint of [~i - <5( v), ~ i +1]], p(Vi-j)(~, v: t) vanishes at least once in
[rj

L_ l' rJ- 1]' and hence by (3,25) and the mean-value theorem

max IP(Vi-j)(~, v; t)1 ~ max IP(vi-j+l)(~,v, t)l(rjR_l-r~_l)' 3~j~Vi'
tell tE J;--t

These bounds together with (3.24), yield

IP(V,-j)(~, v; ~i)1 ~ Ip(Vi- 2)(~, v; UI (I] + (5)j- 2,

and the proof of the lemma is completed. I
As a direct consequence of Lemmas 4 and 5 and Remark 1, we obtain:

THEOREM 5. Given multiplicities v=(vO,.oo,vn+d with vi>O, i=l,oo"n,
and Vo~ 0, Vn + I ~ 0, there exists a unique point ~ E Q n minimizing

Iv(x) =rIP(x, v; t)1 O'(t) dt,
a

with P(x, V;·) = UN+ 1+ L~~o CiU i' satisfying (3.5) and (3.6). Moreover ~ is
independent of the particular choice of UN + 1 from the set offunctions

K( U) = {v I{uo,oo., UN' pv} is an ET-system on [a, b], with p = + 1 or -I}.

Proof Iv(x) is a continuous function of x in Qn, and can be extended
to Qn continuously by defining P(x, V; t) for x E oQ n of the form.

(3.26 )

according to the law P(x, v; t) := P(y, j.1; t) with

l}+! - 1

Ilj= L Vk ,

k=ij

j=o,oo., m+ 1 (io=O, im + 2 =n+2), (3.27)

(3,28 )
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We denote the relation of type (3.27) between p and v by p « v. With this
definition of P(x, v; t) in Qn' min I,(x) over x E Q n is attained. If the
minimum is attained for x E 8Qn, then it is also the minimum of 1,,.,(') over
Qm, where m and p « v are defined by (3.26) and (3.27). Yet, by Lemmas 4
and 5 and Remark 1, if y E Q m is a solution of this minimization problem,
there exists J!=()lo, ... ,)lm+2), P«J!«v, and yEQm+I' such that
Iv(x) = I I1(y) > I,.(y). Since for any XE Qn, related to y and J! according to
(3.26)-(3.28), I,.(y) = Iv(x), we arrive at a contradiction to the assumption
that Iv(x) is minimal for x E aQn"

Therefore the minimum is attained only in Qn, and in view of Theorem 4
and the uniqueness of the corresponding generalized Gaussian quadrature
formula with multiplicties v, the minimum is attained at a unique point
~ E Q n' which is independent of the choice of UN + 1 from K( U). The proof is
completed. I

The following result is a direct consequence of the above proof:

COROLLARY 1. Let v=(vo,..., vn+d be as in Theorem 5, and let
J1 = ()lo, .. ·, )lm + I) satisfy p « v. Then

min rIP(x, v; t)1 a(t) dt < min fb IP(y, p; t)1 a(t) dt.
x EOn a YEQm a
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